Frenz, B. A. (1985). Structure Determination Package. College Station, Texas 77840, USA, and Enraf-Nonius, Delft, The Netherlands, revised locally by Dr F. J. Hollander.
Ibers, J. A. \& Snyder, R. G. (1962). Acta Cryst. 15, 923-930.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Oberhansli, W. \& Dahl, L. F. (1965). Inorg. Chem. 4, 150-157.
Pickardt, J. \& Stühler, H. O. (1980). Chem. Ber. 113, 1623-1626.
Stühler, H. O. \& Pickardt, J. (1981). Z. Naturforsch. Teil B, 36, 315-321.

Acta Cryst. (1988). C44, 21-23

# Structure of ( $\alpha$-2- $\eta$-Benzyl)( $\boldsymbol{P}, \boldsymbol{P}^{\boldsymbol{P}} \boldsymbol{P}^{\prime}, \boldsymbol{P}^{\prime}$-tetra-tert-butylethylenebisphosphine)rhodium(I) 

By Bart Ebbinghaus,* Maria T. Madigan* and Carolyn E. Osterberg $\dagger$<br>Department of Chemistry, University of California, Berkeley, CA 94720, USA

and Lawrence C. Nathan<br>Department of Chemistry, Santa Clara University, Santa Clara, CA 95053, USA

(Received 30 April 1987; accepted 11 August 1987)


#### Abstract

Rh}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)\left(\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{P}_{2}\right)\right], \quad M_{r}=512.50\), triclinic, $\quad P \overline{1}, \quad a=9.5973$ (8),$\quad b=10.4471$ (15), $\quad c=$ 14.3667 (15) $\AA, \quad \alpha=88.46$ (1), $\quad \beta=83.92$ (1), $\quad \gamma=$ $67.95(1)^{\circ}, V=1327.5(3) \AA^{3}, Z=2, D_{m}=1.29, D_{x}$ $=1.283 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha \quad(\lambda=0.7107 \AA), \quad \mu=$ $7.59 \mathrm{~cm}^{-1}, F(000)=544, T=295 \mathrm{~K}, R=0.022$, $w R$ $=0.033$ for 3152 independent reflections with $F_{o}>$ $3 \sigma\left(F_{o}\right)$. The Rh atom is in a distorted square-planar environment in which two coordination sites are occupied by an allylic bond to the benzyl ligand. The benzyl ligand is unsymmetrically bound: the $\mathrm{Rh}-\mathrm{C}(6)$ and $\mathrm{Rh}-\mathrm{C}(7)$ distances are 2.371 (2) and $2 \cdot 162$ (2) $\AA$, respectively. The non-allylic portion of the ligand exhibits the expected bond-length alternation.


Introduction. The title compound, $\left[\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)\right.$ $\left.\operatorname{Rh}\left\{\left(\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\}\right]$, is the product of the reaction of $\left[(\mu-\mathrm{Cl}) \mathrm{Rh}\left\{\left(\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\}\right]_{2}$ and benzyllithium. The fluxional nature of the product in solution is confirmed by the equivalence of the two ortho and meta C atoms in the ${ }^{13} \mathrm{C}$ NMR spectrum (Del Paggio, 1986; Del Paggio, Andersen \& Muetterties, 1987). In this crystal structure determination, the title compound is shown to be an approximately square-planar complex. The diene-like bond-length alternation between those C atoms not involved in allylic bonding is consistent with a simple resonance model of ligand bonding and is typical of $\eta^{3}$-benzyl complexes (Cotton \& LaPrade, 1968; Behrens \& Weiss, 1975; Becker \& Stille, 1978; Sonada, Bailey \& Maitlis, 1979).

[^0]Experimental. The complex $\left[\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{Rh}\right.$ $\left.\left\{\left(\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\}\right]$, prepared as described previously (Del Paggio, 1986; Del Paggio, Andersen \& Muetterties, 1987), was crystallized from pentane. The density was measured by flotation in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{KI}$. An orange parallelepiped crystal measuring $0.45 \times$ $0.25 \times 0.15 \mathrm{~mm}$ was mounted in a 0.3 mm quartz capillary under argon. Data were collected on an Enraf-Nonius CAD-4 diffractometer with graphitemonochromatized Mo $K \alpha$ radiation. Accurate cell dimensions and orientation matrix were obtained by centering 24 reflections ( 12 Friedel pairs) with $27 \leq$ $2 \theta \leq 30^{\circ} .3791$ reflections were collected, of which 3463 were independent and 3152 were observed based on $I>3 \sigma(I)$. The $\theta-2 \theta$ scan mode was used ( $3 \leq$ $2 \theta \leq 45^{\circ}$ ) and the index ranges were $0 \leq h \leq 10$, $-11 \leq k \leq 11$, and $-15 \leq l \leq 15$. Intensity checks every 2 h on three standard reflections indicated no significant decay. $\psi$ scans on four reflections yielded an average maximum variation in intensity of $3 \cdot 2 \%$; thus, no absorption correction was applied.

The data were reduced and the structure solved using the Enraf-Nonius Structure Determination Package (Frenz, 1985). The structure was refined in space group $P \overline{1}$; initial positions of the Rh and two P atoms were determined from a three-dimensional Patterson map. H atoms (not refined) were included at idealized positions with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$ and with isotropic thermal parameters set at 1.3 times those of the corresponding C atom. Full-matrix least-squares refinement of positional and anisotropic thermal parameters of non -H atoms converged at $R=0.022, w R=0.033$ and $S=1.813$. A secondary-extinction parameter was not included in final refinements. The function mini-
mized was $\sum w\left|\left|F_{o}\right|-\left|F_{c}\right|\right|^{2}$ where $w=1 / \sigma^{2}\left(F_{o}\right)$ and $\sigma^{2}\left(F_{o}\right)=\left[\sigma^{2}(I)+\left(p F_{o}^{2}\right)^{2}\right] / 2 F_{o}^{2}$. A value of $p=0.03$ was chosen to prevent overweighting of strong reflections. In the final difference Fourier map $(\Delta \rho)_{\text {max }}=0.32$ and $(\Delta \rho)_{\text {min }}=-0.30 \mathrm{e}^{-3} \AA^{-3}$ Max. $\Delta / \sigma=0.03 .253$ variables were refined.* Atomic scattering factors are taken from International Tables for X-ray Crystallography (1974).

[^1]Table 1. Positional parameters and their e.s.d.'s

|  | $x$ | $y$ | 2 | $B^{*}\left(\AA^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| Rh | $0 \cdot 14655$ (2) | -0.05049 (2) | -0.23023 (1) | 2.792 (4) |
| P (1) | 0.20520 (6) | $0 \cdot 13972$ (6) | -0.22157 (4) | 2.85 (1) |
| P (2) | 0.39204 (7) | -0.17768 (6) | -0.24018 (4) | 2.95 (1) |
| C(1) | -0.0517 (3) | -0.0914 (3) | -0.2645 (2) | 4.21 (6) |
| C(2) | -0.0825 (3) | -0.0726 (3) | -0.3600 (2) | 5.52 (8) |
| C(3) | -0.1798 (3) | 0.0470 (4) | -0.3903 (2) | 6.86 (9) |
| C(4) | -0.2554 (3) | 0.1609 (4) | -0.3294 (3) | 6.73 (9) |
| C(5) | -0.2251 (3) | 0.1491 (3) | -0.2379 (3) | 6.06 (9) |
| C(6) | -0.1205 (3) | 0.0257 (3) | -0.2050 (2) | 4.53 (7) |
| C(7) | 0.0592 (3) | -0.2133 (3) | -0.2318 (2) | 4.80 (7) |
| C(8) | 0.4968 (3) | -0.0660 (3) | -0.2165 (2) | $3 \cdot 58$ (6) |
| C(9) | 0.4138 (3) | 0.0833 (2) | -0.2433 (2) | 3.48 (6) |
| C(10) | 0.1589 (3) | 0.2276 (3) | -0.1018 (2) | 4.14 (6) |
| C(11) | $0 \cdot 1915$ (4) | 0.3596 (3) | -0.0967 (2) | 5.61 (8) |
| C(12) | 0.2552 (4) | 0.1232 (3) | -0.0348 (2) | 5.29 (8) |
| C(13) | -0.0083 (4) | 0.2577 (4) | -0.0668 (2) | 5.87 (8) |
| C(14) | 0.1409 (3) | $0 \cdot 2808$ (2) | -0.3127 (2) | 3.55 (6) |
| C(15) | -0.0212 (4) | 0.3796 (3) | -0.2864 (2) | 5.42 (8) |
| C(16) | $0 \cdot 1427$ (3) | $0 \cdot 2066$ (3) | -0.4042 (2) | 4.47 (7) |
| C(17) | 0.2423 (3) | 0.3635 (3) | -0.3322 (2) | 4.92 (7) |
| C(18) | $0.4802^{\circ}$ (3) | -0.2555 (3) | -0.3604 (2) | 3.93 (6) |
| C(19) | 0.6448 (4) | -0.3568 (3) | -0.3661 (2) | 6.09 (9) |
| C(20) | 0.4722 (3) | -0.1355 (3) | -0.4251 (2) | 4.78 (7) |
| C(21) | 0.3831 (4) | -0.3265 (3) | -0.3997 (2) | 5.84 (8) |
| C(22) | 0.4603 (3) | -0.3187 (3) | -0.1500 (2) | 4.06 (6) |
| C(23) | 0.6289 (4) | -0.3683 (3) | -0.1372 (2) | 5.40 (8) |
| C(24) | $0 \cdot 3722$ (4) | -0.2557 (3) | -0.0560 (2) | 5.44 (8) |
| C(25) | 0.4219 (4) | -0.4420 (3) | -0.1727 (3) | $6 \cdot 18$ (8) |

*The thermal parameter given for anisotropically refined atoms is the equivalent isotropic thermal parameter defined as: $\frac{4}{3}\left[a^{2} B(1,1)\right.$ $+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+$ $b c(\cos \alpha) B(2,3)]$, where $a, b, c$ are real-cell parameters and $B(i, j)$ are anisotropic betas.

Table 2. Selected bond distances ( $\AA$ ), bond angles $\left({ }^{\circ}\right)$ and torsional angles $\left({ }^{\circ}\right)$

| $\mathbf{R h - P ( 1 )}$ |  | 2.269 (1) |  | $\mathbf{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$ |  |  | 88.23 (2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rh-P(2) |  | $2 \cdot 219$ (1) |  | $\mathbf{P}(1)-\mathrm{Rh}-\mathrm{C}(6)$ |  |  | 106.72 (5) |  |
| $\mathrm{Rh}-\mathrm{C}(1)$ |  | $2 \cdot 208$ (2) |  | $\mathbf{P}(1)-\mathrm{Rh}-\mathrm{C}$ (7) |  |  | $172 \cdot 15$ (6) |  |
| Rh-C(6) |  | $2 \cdot 371$ (2) |  | $\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(6)$ |  |  | $163 \cdot 80$ (6) |  |
| Rh-C(7) |  | $2 \cdot 162$ (2) |  | $\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(7)$ |  |  | 99.36 (6) |  |
| $\mathrm{C}(1)-\mathrm{C}(2)$ |  | 1.427 (3) |  | $\mathrm{C}(6)-\mathrm{Rh}-\mathrm{C}(7)$ |  |  | 65.51 (8) |  |
| C(2)-C(3) |  | 1.344 (4) |  | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$ |  |  | 123.0 (2) |  |
| $\mathrm{C}(3)-\mathrm{C}(4)$ |  | 1.405 (4) |  | $\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$ |  |  | 120.0 (2) |  |
| C(4)-C(5) |  | 1.371 (4) |  | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ |  |  | 121.7 (2) |  |
| $\mathrm{C}(5)-\mathrm{C}(6)$ |  | 1.410 (3) |  | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ |  |  | 121.6 (2) |  |
| $\mathrm{C}(1)-\mathrm{C}(7)$ |  | 1.427 (3) |  | C(3)-C(4)-C(5) |  |  | 118.7 (2) |  |
| $\mathrm{C}(1)-\mathrm{C}(6)$ |  | 1.413 (3) |  | $\begin{aligned} & C(4)-C(5)-C(6) \\ & C(1)-C(6)-C(5) \end{aligned}$ |  |  | $\begin{aligned} & 120 \cdot 8(2) \\ & 120.6(2) \end{aligned}$ |  |
|  |  |  |  |  |  |  |  |  |
| $\mathrm{P}(2) \quad \mathrm{Rh}$ | $\mathrm{P}(1)$ | C(9) | 7.36 (9) | Rh | $\mathrm{P}(1)$ | C(9) | C(8) | -26.9 (2) |
| $\mathrm{P}(1) \mathrm{Rh}$ | $\mathrm{P}(2)$ | $\mathrm{C}(8)$ | 9.15 (9) | Rh | P(2) | C(8) | C(9) | -28.1 (2) |
| $\mathrm{P}(2) \quad \mathrm{C}(8)$ | C(9) | P(1) | 35.3 (2) |  |  |  |  |  |

Discussion. The final atomic coordinates are listed in Table 1 and selected bond distances and angles are given in Table 2. Fig. 1 is a view of the molecule showing the atomic numbering scheme.

The 16 -electron $\mathrm{Rh}^{1}\left(d^{8}\right)$ complex exhibits pseudo-square-planar geometry with two adjacent coordination sites occupied by the allylic ligand. The $\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$ angle is close to the ideal value of $90^{\circ}$; the small bite of the allylic ligand, however, causes distortion of the remaining angles. There is a dihedral angle of $6^{\circ}$ between the planes defined by $\mathrm{Rh}-$ $\mathrm{P}(1)-\mathrm{P}(2)$ and $\mathrm{Rh}-\mathrm{C}(6)-\mathrm{C}(7)$, and the Rh atom itself is $0.075 \AA$ above the $\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(6)-\mathrm{C}(7)$ leastsquares plane. In addition, $\mathrm{P}(1)$ and $\mathrm{C}(7)$ are above this plane, while $P(2)$ and $C(6)$ are located below the plane. These features indicate that the deviation from planarity in this molecule involves both bending and twisting at the Rh center.

Rh bonding to ( $\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ ) is not completely symmetrical. The $\mathrm{Rh}-\mathrm{C}(6)$ distance is $0.209 \AA$ longer than $\mathrm{Rh}-\mathrm{C}(7)$, which is consistent with the difference in electron densities on $C(6)$ and $C(7)$ as determined by extended Hückel molecular-orbital calculations (Bleeke, Burch, Coulman \& Schardt, 1981). This bond-length difference is comparable to the $0.21 \AA$ difference between analogous bonds found in $\left[\left(\eta^{3}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right.\right.$ $\left.\mathrm{CH}_{2}\right) \mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}$ ] (Cotton \& La Prade, 1968), but it is significantly less than the $0.325 \AA$ difference found in $\left[\left\{\eta^{3}-\left(\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6} \mathrm{CH}_{2}\right\} \mathrm{Rh}\left(\mathrm{P}\left\{\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{2}\right)_{2}\right.$ (Burch, Muetterties \& Day, 1982) and the 0.372 A difference found in $\left[\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{Co}\left\{\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right\}_{3}\right]$ (Bleeke, Burch, Coulman \& Schardt, 1981). In addition, the $\mathrm{Rh}-\mathrm{P}$ bond trans to $\mathrm{C}(7)[\mathrm{Rh}-\mathrm{P}(1)]$ is slightly longer ( $0.050 \AA$ ) than that trans to $\mathrm{C}(6)[\mathrm{Rh}-\mathrm{P}(2)]$, as is the case with $\left[\left\{\eta^{3}-\left(\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6} \mathrm{CH}_{2}\right\} \mathrm{Rh}\left(\mathrm{P}\left\{\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right)_{2}\right]$.

The benzyl ligand itself exhibits an 'allyl-diene' distortion which has been observed in similar complexes


Fig. 1. Molecular structure of $\left[\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)\right.$ $\left.\mathrm{Rh}\left\{\left(\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\}\right\}$ showing the atomic numbering scheme. Ellipsoids represent $30 \%$ probability surfaces.
(Cotton \& LaPrade, 1968; Behrens \& Weiss, 1975; Becker \& Stille, 1978; Sonada, Bailey \& Maitlis, 1979). The $C(2)-C(3)$ and $C(4)-C(5)$ bond lengths are significantly shorter than the remainder of the $\mathrm{C}-\mathrm{C}$ distances in the ligand, suggesting the double-bond localization of a diene. The difference between the averages of longer and shorter bond lengths is $0.058 \AA$ for $\left[\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{Rh}\left\{\left(\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\}\right]$; on this basis, the magnitude of the 'allyl-diene' distortion is comparable to that observed in $\left[\left\{\eta^{3}-\left(\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6} \mathrm{CH}_{2}\right\}\right.$ $\left.\mathrm{Rh}\left(\mathrm{P}\left\{\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right)_{2}\right](0.055 \AA),\left[\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{Co}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right\}_{3}\right](0.057 \AA)$, and $\left[\left\{\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right\}\right.$ -$\operatorname{Rh}(1,5-$ cyclooctadiene)] ( $0.065 \AA$ ) (Stuhler \& Pickardt, 1981). The $\eta^{3}$ coordination of the benzyl ligand in solution and the fluxionality of the complex have been established by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Del Paggio, 1986; Del Paggio, Andersen \& Muetterties, 1987).

This structure was determined at the UCB CHEXRAY facility in partial fulfilment of the requirements of a UCB chemistry course in X-ray structure determination. We thank our instructors, Professor K. N. Raymond, Mr Paul Smith and Dr F. J. Hollander. We
also acknowledge many helpful discussions with Dr Al Del Paggio and the members of the Armstrong group.

## References

Becker, Y. \& Stille, J. K. (1978). J. Am. Chem. Soc. 100, 845-850.
Behrens, U. \& Weiss, E. (1975). J. Organomet. Chem. 96, 399-433, 435-450.
Bleeke, J. R., Burch, R. R., Coulman, C. L. \& Schardt, B. C. (1981). Inorg. Chem. 20, 1316-1318.

Burch, R. R., Muetterties, E. L. \& Day, V. W. (1982). Organometallics, 1, 188-197.
Cotton, F. A. \& LaPrade, M. D. (1968). J. Am. Chem. Soc. 90, 5418-5422.
Del Paggio, A. A. (1986). PhD thesis, Univ. of California, Berkeley, CA 94720, USA.
Del Paggio, A. A., Andersen, R. A. \& Muetterties, E. L. (1987). Inorg. Chem. In the press.

Frenz, B. A. (1985). Enraf-Nonius Structure Determination Package. College Station, TX, USA and Enraf-Nonius, Delft, The Netherlands. Revised locally by Dr F. J. Hollander.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Sonada, A. Bailey, P. M. \& Maitlis, P. M. (1979). J. Chem. Soc. Dalton Trans. pp. 346-350.
Stuhler, H. D. \& Pickardt, H. (1981). Z. Naturforsch. Teil B, 36, 315-321.

# Monoclinic and Triclinic Forms of [1,2-Bis(diphenylphosphino)propane]((%5Ceta%5E%7B6%7D)-methyldiphenylphosphine)(methyldiphenylphosphine)molybdenum(0) Benzene Solvate 

By Robert H. Morris, Jeffery F. Sawyer and Andrea Sella<br>Department of Chemistry and the Scarborough Campus, University of Toronto, 80 St George Street, Toronto, Ontario, Canada M5S 1A1

(Received 13 April 1987; accepted 14 July 1987)


#### Abstract

Mo}\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{P}\right)_{2}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)\right]_{2} . \mathrm{C}_{6} \mathrm{H}_{6}, \quad M_{r}=\) 1895.8, triclinic, $P \overline{1}, a=13 \cdot 808$ (2), $b=15 \cdot 860$ (3), $c=23 \cdot 315(5) \AA, \quad \alpha=103 \cdot 18(2), \quad \beta=102.45(1), \quad \gamma$ $=96.79(1)^{\circ}, \quad U=4779(4) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.317 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu(\mathrm{Mo} K \alpha)=0.43 \mathrm{~mm}^{-1}, \quad F(000)=$ 1972, $T=298 \mathrm{~K}, R=0.081$ for 6515 observed $[I>$ $3 \sigma(I)]$ reflections. [ $\left.\mathrm{Mo}\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{P}\right)_{2}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)\right] . \mathrm{C}_{6} \mathrm{H}_{6}, M_{r}$ $=987 \cdot 0$, monoclinic, $\quad P 2_{1} / a, \quad a=19.165(9), \quad b=$ $13 \cdot 154$ (10), $c=20 \cdot 195$ (9) $\AA, \quad \beta=105 \cdot 09$ (4) ${ }^{\circ}, \quad U=$ 4916 (9) $\AA^{3}, \quad Z=4, \quad D_{x}=1.333 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu($ Mo $K \alpha)$ $=0.43 \mathrm{~mm}^{-1}, F(000)=2056, T=298 \mathrm{~K}, R=0.093$ for 2268 observed $[I>3 \sigma(I)$ ] reflections. The triclinic form contains two independent molecules in the asymmetric unit. One molecule has the configurations $S$ (exo-P), $S$ (prophos) and the other $S$ (exo-P), $R$ (prophos) for the phosphine ligands. Thus all possible


combinations of the possible configurations of the phosphine ligands ( $S S, R R, R S$ and $S R$ ) are present in the centrosymmetric unit cell. There is one molecule of benzene solvent in the asymmetric unit. In the asymmetric unit of the monoclinic form the molecule has the configurations $S$ (exo-P), $S$ (prophos) and the unit cell contains only $S S$ and $R R$ molecules. There is one molecule of benzene solvent per Mo in this form.

Introduction. Formation of $\eta^{6}$-arylphosphine molybdenum complexes is thought to occur via an intramolecular $\sigma$ to $\pi$ rearrangement of an octahedral disolvated tetraphosphine molybdenum intermediate (Frizzell, Luck, Morris \& Peng, 1985). In the series of compounds $\left[\mathrm{Mo}\left(\eta^{6}-\mathrm{PhPMePh}\right)(\mathrm{P}-\mathrm{P})\left(\mathrm{PMePh}_{2}\right)\right](\mathrm{P}-\mathrm{P}$ $=$ chelating diphosphine) the dangling P atom of the © 1988 International Union of Crystallography


[^0]:    * To whom correspondence should be addressed.
    $\dagger$ Current address: Department of Chemistry, University of Utah, Salt Lake City, UT 84112 , USA.

[^1]:    * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44316 ( 26 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

